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The 2175 Å extinction feature is by far the strongest spectral signature of
interstellar dust observed by astronomers.  Forty years after its discovery the origin
of the feature and the nature of the carrier remain controversial.  The feature is
enigmatic because although its central wavelength is almost invariant its bandwidth
varies strongly from one sightline to another, suggesting multiple carriers or a single
carrier with variable properties.  Using a monochromated transmission electron
microscope and valence electron energy-loss spectroscopy we have detected a 5.7 eV
(2175 Å) feature in submicrometer-sized interstellar grains within interplanetary
dust particles (IDPs) collected in the stratosphere.  The carriers are organic carbon
and amorphous silicates that are abundant and closely associated with one another
both in IDPs and in the interstellar medium.  Multiple carriers rather than a single
carrier may explain the invariant central wavelength and variable bandwidth of the
astronomical 2175 Å feature.

Much of what is known about grains in space comes from spectral features observed in
reflection, emission, polarization and extinction1-5.   The strongest feature by far is the so-
called “~2175 Å bump” that can be observed in the interstellar medium (ISM) along
almost every galactic line of sight (Figs. 1a&b).  From interstellar abundances of the
elements and known ultraviolet (UV) transitions the carrier is likely either carbon-rich or
oxygen-rich, possibly combined with H, Mg, Si, and Fe in various proportions2,3.  Most
astronomers ascribe it to some form of amorphous or graphitic carbon because photon
induced electronic (π → π*) transitions in graphite produce a ~2175 Å feature, and the
strength of the feature is consistent with the interstellar abundance of carbon3.  While
graphite can explain the constant position it cannot explain variations in bandwidth (full
width at half maximum, FWHM) of the feature observed from one line-of-sight to
another.  This problem appears to be common to most forms of inorganic and organic
carbon3.  Oxygen-based carriers that have been proposed include silicates and oxides
containing Mg, Si, Fe, as well as hydroxylated amorphous magnesium silicates2,6.   The
position and the bandwidth of some hydroxylated silicate features match the interstellar
feature (Fig. 1c) 6.

We searched for the ~2175 Å UV feature in chondritic interplanetary dust particles
(IDPs) collected in the stratosphere.  IDPs are tiny objects, typically <20 µm diameter,
composed mostly of aggregates of submicrometer and nanometer-sized grains containing
crystalline silicates, sulfides, metal, amorphous silicates, and carbon7-16.  They are from
comets and asteroids and they include the most chemically and isotopically primitive
meteoritic materials available for laboratory investigations12-16. IDPs are logical materials
in which to look for carriers of the 2175 Å feature because estimates of the abundance of
preserved interstellar material in IDPs (450-5500 ppm) are 10-100x higher than in the
most cosmically primitive class of carbon-rich meteorites, the carbonaceous chondrites
15,16.  Interstellar amorphous silicates and carbon, the two most abundant grain types in the
interstellar medium, have been found in chondritic IDPs (Fig. 2).  The amorphous
silicates are “GEMS” (glass with embedded metal and sulfides) some of which have non-
solar O isotopic compositions16-18.  Some GEMS exhibit a ~10 µm feature that matches
the interstellar 9.7 µm “amorphous silicate” feature18.  The carbon is a mixture of
inorganic and organic carbon and some of it exhibits non-solar D/H, 15N/14N, and 13C/12C
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ratios of magnitudes comparable to those observed in interstellar molecular clouds13-15,19-

21.

We used a new generation transmission electron microscope (TEM) equipped with a
monochromator and high-resolution electron energy-loss spectrometer to measure UV
spectral properties22 .  The region of an electron energy-loss spectrum between 0 and ~100
eV is called the low-loss or valence electron energy-loss spectroscopy (VEELS) region
where features due to collective plasma oscillations and single electron transitions of
valence electrons are observed23,24.  We used VEELS to make the measurements because
IDPs have proven difficult to measure using conventional UV spectroscopy due to their
sub-nanogram masses25.  The monochromator provides unprecedented access with
atomic-scale spatial resolution and detection limits to the 1-10 eV energy (1241-124 nm
wavelength) region that includes the 5.7 eV (2175 Å) region.   Although the
measurements were made using VEELS rather than photo-absorption spectroscopy used
by astronomers, the VEELS data were acquired under (electron optical) conditions where
the features are directly comparable26,27.   A synchrotron light source was used to measure
infrared (IR) spectral properties14,18, and a NanoSIMS ion microprobe to measure the
isotopic compositions of the grains within IDPs28.

Observations
Figure 2 shows a brightfield image of carbon and GEMS in a fragment of carbon-rich
chondritic IDP L2009*E2.   The bulk composition of the particle is within a factor of two
chondritic (solar) for all major elements except C which is ~3X chondritic (solar)
abundance29. Nearly all the GEMS and other mineral grains in L2009*E2 are
encapsulated in amorphous carbon.  Ion microprobe measurements indicate that some of
the carbon is of interstellar origin.  A bulk δD of 400‰ associated with carbon was
measured in L2009*E2 and related fragments from the same IDP show δD as high as
+11,000‰, similar to δD values observed in interstellar molecular clouds29.

A VEELS spectrum from an electron-irradiated specimen of the mineral talc
(Mg3Si4O10[OH]2) is plotted in Figure 1d.  Talc rapidly amorphizes under electron
irradiation and the strength of the 5.7 eV feature increases with dose.  The peak position
and bandwidth of the talc feature match the photo-absorption feature of partially
recrystallized, hydroxylated magnesium silicate Mg2SiO4 [OH]x (Figs. 1c & d)6.  The talc
feature also matches the astronomical UV feature (Figs. 1a, b & d).  VEELS spectra from
carbon grains in three IDPs and an amorphous carbon thin-film standard are plotted in
Figure 3a.  The carbon in each of the grains exhibits a 5.7 eV feature with an average
bandwidth (FWHM) of 2.6 eV (2.2 µm-1).  Amorphous inorganic carbon exhibits a
similar feature but at a significantly higher energy (6.3 eV) and volume plasmon position
(24.5 eV).  There is downward shift in the peak energy of the volume plasmon with
increasing strength of the 5.7 eV feature.  The 5.7 eV from L2036-C18-F4 is the weakest
and the volume plasmon peaks at 24.0 eV, whereas 5.7 eV feature from L2036-G16 is the
strongest and the volume plasmon peak is shifted downwards to ~22.7 eV. The strength
of the 5.7 eV carbon feature also correlates with the O/C ratio (Fig. 3).  Energy-loss C
and O core scattering edges from the most O-rich regions exhibit fine structure consistent
with carbonyl (or hydroxyl) functional groups (Fig. 4)20.  Infrared (IR) spectra from the
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same regions exhibit prominent C-H stretch and C=O features at ~3.4 µm and a 5.9 µm
respectively (Fig. 4).  Although signal-to-noise is low, due to extreme thinness of the
specimen (~100 nm), the overall structure of the C-H stretch feature between 2850 and
3100 cm-1 is consistent with aliphatic groups bound to other molecules (most likely
PAHs) (Fig. 4)30,31.  VEELS spectra were obtained from pyrene (C16H10), 1-pyrene
carboxaldehyde (C17H10O), pentacene (C16H10), pentacene quinone (C16H12O2).  The PAHs
with carbonyl functionality (C17H10O and C16H12O2) exhibit a 5.7 eV feature while the
unsubstituted PAHs (C16H10 and C16H10) do not.  GEMS produce a 5.7 eV feature with an
average bandwidth (FWHM) of 2.9 eV (2.5 µm-1) and the strength of the feature
correlates strongly with hydroxyl (OH-) abundance expressed as oxygen excess over
stoichiometry (Oex) (Fig. 5) 17.

The isotopic compositions of several of the carbon and GEMS grains were measured
using NanoSIMS ion microprobes.  The VEELS spectrum from L2047 D23 (Fig. 3) is
from a ~800 nm diameter carbon grain with a 14N/15N ratio of 192 ± 4 (2σ).   Several 15N-
enriched “hotspots” were identified in L2047 D23, although the measured bulk 14N/15N
ratio of the IDP (272 ± 2) is the same as the solar value (272).    L2036-C18-F4 (Fig. 3) is
from a ~300 nm diameter carbon grain with non-solar C and N isotopic compositions
(12C/13C = 80±2.4, 14N/15N = 135±6.4).   This IDP has a non-solar bulk N composition
14N/15N = 203).   L2036-c24-I3 (Fig. 5) is from a ~650 nm diameter cluster of GEMS
with non-solar O isotopic compositions (16O/17O = 2262 & 16O/18O = 403)15.   The isotopic
signatures clearly establish that the grains are of (presolar) interstellar origin.

Discussion
Small (~15 nm diameter) graphite particles and PAHs have long been favored as the most
likely carriers of the astronomical 2175 Å feature.  However, small graphite particles are
conspicuously absent in the most primitive meteoritic materials (meteorites and IDPs)
and there is no spectral evidence of their presence in the ISM.  Interest in graphite has
been driven to some extent by computational considerations because it is one of the few
(carbonaceous) materials for which good laboratory optical constants are available1.
PAHs are ubiquitous in primitive meteoritic materials and there is evidence of their
presence as both gases and solids in the ISM1.  Moreover, they encompass a wide variety
of substituted and unsubstituted moieties that could explain the observed variation in the
bandwidth of the 2175 Å feature.  Hydrogenated amorphous silicates have largely been
abandoned as carriers of the 2175 Å feature in part because of perceived abundance
constraints and because hydrogenated amorphous silicate models are not well
developed2,3.

Our measurements of bone fide interstellar grains represent a novel approach in the
search for the carrier(s) of the astronomical 2175 Å extinction feature. The grains,
organic carbon and amorphous silicates, are usually closely associated with one another
in most IDPs (e.g. Fig. 2) and there strong evidence that they are coupled in the ISM1.
The average bulk carbon content of IDPs (~12 wt. %) is a factor of ~3 higher than the
carbonaceous chondrites20,32.   Graphitic carbon is conspicuously absent in most IDPs.
Instead, it is amorphous and it typically forms a matrix that contains embedded mineral
grains (Fig. 2)29.  As much as half of the carbon is organic, 10-25% of it aliphatic and



5

much of the remainder presumably aromatic (e.g. PAHs)19,20.  Synchrotron XANES
measurements indicate that ~10% of the carbon is bound as carbonyl (C=O)2 0.  A
significant fraction of the carbonyl is bound to aromatic chromophores because in some
IDPs the mass of carbonyl exceeds that of aliphatic compounds20. Non-solar D/H, 13C/12C,
and 15N/14N anomalies in IDPs are associated with the organics13-15,21.  The carbon is
similar to kerogens found in carbonaceous chondrites, although there are significant
structural and molecular differences19,33,34.

The central wavelength of the carbon 5.7 eV feature is constant (Fig. 3), suggesting a
relatively homogenous kerogen, although isotopically anomalous “hotspots” indicate
significant molecular heterogeneity13-15,21.  The bandwidth of the carbon (and GEMS)
features are also constant but broader than the astronomical feature (Fig. 3 & 4).
However, bandwidths are sensitive to the physical state of grains35-37.    These grains are
no longer free-floating in the ISM and the extent to which they have been modified
during their ~4.5 Gyr post-ISM lifetimes is unknown.  Best fits to the 2175 Å feature
using computer modeling are obtained when much smaller (<15 nm diameter) grains are
used1-3.  The strength of the carbon 5.7 eV feature correlates with the O/C ratio (Fig. 3).
IR spectroscopy indicates that carbonyl (C=O) is the O carrier (Fig. 4).  Therefore, the
5.7 eV feature from the carbon grains is likely due to organic molecules (e.g. PAHs) with
carbonyl functionality.  VEELS measurements of unsubstituted and carbonyl-substituted
PAHs pyrene and pentacene confirm that the 5.7 eV feature is related to carbonyl
functionality associated with aromatic chromophores.  Carbonyl compounds have been
detected in interstellar ices and they have also been synthesized in the laboratory when
PAH/ice mixtures are exposed to proton and UV irradiation under simulated ISM
conditions 1,38,39.

GEMS contain at least two components that may contribute to the 5.7 eV feature.  First,
in addition to being coated with carbon, acid dissolution experiments suggest that some
of them contain carbon within their interiors40.  Second, the glassy matrices of GEMS are
composed of hydroxylated amorphous magnesium silicates.  Stoichiometric excesses of
O observed in GEMS are due to hydroxyl ions (OH-) within their amorphous magnesium
silicate matrices17,22.  Steel and Duley (1987)6 showed that laboratory UV spectra of
hydroxylated amorphous magnesium silicate particles exhibit an absorption feature at
2175Å, due to an electronic transition of hydroxyl ions in low-coordination sites (OH-

LC),
that matches both the central wavelength and bandwidth of the interstellar feature (Figs.
1a-1c).  In irradiated talc (Mg3Si4O10[OH]2) the feature is likely also due to OH-

LC because
the intensity of feature increases with radiation damage (amorphization).  Similarly, most
of the hydroxyl in GEMS is probably OH-

LC because the glassy matrices are defect-rich
from chronic exposure to irradiation in space17. The strong correlation between the 5.7 eV
feature and Oex indicates that OH- is the dominant contributor in GEMS (Fig. 3a).  It is
not surprising that interstellar amorphous silicates exposed to irradiation are carriers of a
5.7 eV (2175 Å) feature since, in addition to OH-

LC, a variety of electronic transitions are
possible in the 5-8 eV range in defect-rich amorphous silicas41.
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Summary
Interstellar carbon and amorphous silicate grains exhibiting a 5.7 eV (2175 Å) UV feature
have been identified in chondritic IDPs collected in the stratosphere.   The species
responsible for the feature are carbonyl-containing organic compounds (probably PAHs)
and hydrogenated amorphous silicates, both of which may have been produced by
irradiation processing of dust in the ISM.  Prior to this study carbonyl compounds were
not implicated as carriers of the astronomical 2175 Å extinction feature, whereas
amorphous silicates have been implicated.  Identification of these carriers in bone fide
interstellar grains provides new input for computational modeling, laboratory syntheses
of grain analogues, and laboratory (UV) photo absorption measurements.  Two carriers
may explain the constant wavelength and variable bandwidth of the astronomical feature,
with the relative abundance or state of each varying from one sightline to another.  We
cannot conclude that organic carbon and (hydroxylated) amorphous silicates are the only
carriers of the astronomical feature.  A variety of other carriers have been proposed
including graphite “onions”, nano-diamonds, desiccated micro-organisms1-3, and even
fullerenes that were discovered while attempting to synthesize the carrier of the
interstellar 2175 Å feature42.  However, organic carbon and amorphous silicates are the
“common stuff” of interstellar space and cosmically abundant carriers are needed to
explain the ubiquity of the 2175 Å feature.

Methods
Specimen preparation
Powder  standards of talc, pyrene (C16H10), and 1-pyrene carboxaldehyde (C17H11O) were
dispersed onto holey-carbon support films on 3 mm diameter Cu transmission electron
microscope (TEM) grids.   One chondritic IDP (W7013E17) was thin-sectioned using
ultramicrotomy and transferred to a TEM grid.    Four IDPs (L2047D23, L2036-c18-F4,
L2036-C24-I3, and L2036 D16), were pressed into high purity gold foils for isotopic
analyses using a NanoSIMS ion microprobe (see below).  After the isotope measurements
electron transparent sections (<100 nm thick) of the IDPs pressed into Au were extracted
using a focused ion beam (FIB) technique43.  The sections of L2036-D16 were transferred
to holey carbon substrates where they were positioned over a hole in the carbon. (Carbon
support substrates potentially interfere with the analyses because they produce a broad,
weak feature at ~6.3 eV (Fig. 3).  Extracted sections of L2047D23 and W7027 E17 were
spot-welded to the edge of a Mo TEM grid using Pt.

Transmission electron microscopy
High energy-resolution VEELS was carried out in combination with Z-contrast imaging
using a FEI Tecnai G2 F20 UT (scanning) transmission electron microscope operating at
200 kV.  The G2 is equipped with a high-resolution electron energy-loss spectrometer
and a double-focusing Wien filter acting as a monochromator below the field-emission
gun44,45.  This electron optical configuration delivers a ~1 nm sized electron probe with an
energy resolution of 0.18 eV. Acquisition times are typically between 0.5 and 1 s, for
core losses between 3 and 10 eV.
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For measurements of the 5.7 eV feature (Figs 3 & 4) we used the following settings:
acquisiton time: 1 s, dispersion: 0.02 eV/channel, monochromator potential: 800 V,
monochromator excitation: 0.3, Spot size: 11, collection angle (VEELS): 5.6 mrad,
convergence angle (monochromated electron probe): 20.6 mrad.   In order to accurately
scale the energy loss in the VEELS spectra, immediately after recording the valence
"region" (down to ~0.5 eV) without the zero-loss peak, the spectrum was shifted by 1 eV
and the zero-loss peak was recorded using a shorter acquisiton time of 0.01 s.

The compositions of carbon and GEMS were measured in a 300 keV Philips CM300 field
emission TEM equipped with an Oxford Instruments solid-state energy-dispersive x-ray
(EDX) spectrometer and EmiSPEC spectral processing software.  Spectra were quantified
using an x-ray thin-film correction procedure.  The precision and accuracy of the
correction procedures were verified using NIST thin-film standard SRM2063 and by in-
situ analyses of mineral grains of known compositions within the IDP sections.

Infrared spectroscopy
The TEM specimen of IDP L2036 G16 was analyzed in transmission mode using an
infrared microscope at the Advanced Light Source, Lawrence Berkeley National
laboratory (beamline 1.4.3). The beamline is equipped with a ThermoNicolet Magna 760
FTIR bench and a SpectraTech Nic-Plan IR microscope.  An MCT-A detector and KBr
beamsplitter were used for mid-IR microspectroscopy.  The synchrotron source was
focused to a diffraction-limited 3-10 µm diameter spot size onto the sample.  The data
was obtained by mapping the sample in 2µm steps and collecting spectra over 650 to
8000 cm-1 wavelength range with 4 cm-1 spectral resolution and 1026 sec dwell time.
Spectra were normalized to the background spectrum collected over a hole in the
substrate. Spectra are background subtracted and smoothed.

NanoSIMS Analyses

IDP L2047D23 was analyzed with the Lawrence Livermore National Laboratory
NanoSIMS 50 ion microprobe and IDPs L2036-c18-F4, L2036-C24-I3, and L2036-G16
were analyzed with the Washington University NanoSIMS 5014,15,28.  The samples were
pressed flat into high purity (99.999%) gold foil. Isotopic measurements were made with
a ~1.5 pA, 16 keV 133Cs+ primary ion beam focused into a 100-150 nm diameter spot,
rastered over sample areas ranging in size from 10 x 10 microns to 30 x 30 microns.  The
isotope imaging measurements consist of up to 40 replicate scans (layers) of 256 x 256 or
512 x 512 pixels with dwell times ranging from 1-10 ms/pixel.  Secondary ion intensities
were collected simultaneously in multi-collection mode using 3 different collector
configurations, [16O–, 17O–, 18O–, 12C14N–, 12C15N–],  [12C–, 13C–, 12C14N–, 12C15N–, 28Si–], and
[16O–, 17O–, 18O–, 28Si–, 24Mg16O–]; secondary electron images were also recorded.  A mass
resolving power of ~6500 was used to separate isobaric interferences from the isotopes of
interest, e.g., 16O1H from 17O at mass 17, 13C2 from 12C14N at mass 26, and 12C15N from
13C 14N at mass 27.  The data were corrected for instrumental mass-dependent
fractionation of C and N based on analyses of NIST SRM-8558 (potassium nitrate) mixed
with NIST SRM-8541 (graphite) at LLNL and 1-hydroxy-benzotriazole-hydrate at
Washington University; the magnitude of instrumental fractionation was generally <1%.
Internal calibration was used for the O isotope imaging measurements.
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The data were processed as quantitative isotopic ratio images using custom software that
corrects for statistical outliers and image shift from layer to layer. Each analysis area was
subdivided into region of interest (ROIs), and the isotopic composition for each ROI was
calculated by averaging over all of the replicate layers. The compositions of isotopically
anomalous ROIs were compared to similarly-sized regions of normal isotopic
composition from the rest of the particle for an evaluation of the statistical significance of
the anomalies. This approach identified several sub-micrometer size areas (‘hotspots’),
whose compositions in C, N, or O clearly indicate an interstellar (presolar) origin. The
average isotope composition for whole IDPs was calculated as the weighted mean of the
individual ROI values.
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Figure Captions

Figure 1.   Comparison of astronomical UV extinction features with laboratory UV and
VEELS features.   (a) The 2175 Å interstellar extinction feature from two stars ζ and ε
Persei4.  (b) The profile as derived from 13 stars.  Continuous line is the best fit
Lorentzian 5.  (c) Photo-absorption spectrum from partially-recrystallized hydroxylated
amorphous magnesium silicate (Mg2SiO4[OH]n

6.   (d)  VEELS spectrum from (electron)
irradiation damaged talc (Mg3Si4O10[OH]2).  (e)  VEELS spectrum from (organic) carbon
in IDP L2047 D23.  (f)  VEELS spectrum from GEMS in W7013 E17.  Vertical scale in
(a) is magnitude, and in (b) through (f) normalized logarithmic.

Figure 2.  200 keV brightfield transmission electron micrograph of carbon (C) and GEMS
within chondritic interplanetary dust particle L2009*E2.

Figure 3. VEELS spectra from carbon: (a) L2036-G16,  (b) L2047 D23,
(c) L2036-C18-F4,  (d) amorphous carbon film.  O/C is element ratio of oxygen to
carbon.

Figure 4 (a) Infrared spectrum from a ~3X3 µm region of carbon in IDP L2036 G16 (see
also Fig. 3a).  Peaks 2850-2960 cm-1 are due to aliphatic C-H stretch modes and  the peak
at ~1720 cm-1 is due to carbonyl (C=O).  Specimen thickness is <100 nm.  Insets (a) &
(b), 300 keV electron energy-loss spectra (monochromator off) of carbon-K edge
showing double π* edges (dashed lines) at ~285.0 eV and 286.5 eV consistent with
carbonyl (C=O)20., and oxygen-K edge showing a pre-edge at ~531eV (arrowed)
associated with a 1s to π* transition of oxygen and also consistent with carbonyl20.

Figure 5.  VEELS spectra from GEMS (a)-(c) W7013E17 ( 3 GEMS), (d) L2036-C24-I3,
(e) L2036-C18-F4.  Oex is hydroxyl (-OH-) as excess oxygen over stoichiometry 16,27.  The
feature at 10.5 eV is an exciton characteristic of silicates.
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